

A Conoship company

# Wind Assisted Ship Propulsion



Autonomous 40 ft containerized unit with two foldable VentiFoils Over 200 kW feasible power reduction on propulsion per unit





#### Design Rationale eConowind-unit

The eConowind-unit is integrated in a 40 ft container from which two folding 'VentiFoils' can be deployed: ridged 'aspirated wing profiles' acting as sails. The VentiFoils are designed as optimal compact (non-rotating) wing profiles, creating superior thrust by means of the principle of 'boundary-layer-suction', for which ventilators are mounted in the VentiFoils.

Due to the generated thrust by the eConowind-unit, the thrust of the propeller can be reduced to maintain the same speed, see figure 2. This leads to fuel savings and emission reductions of 10 to 30%, depending on vessel type and number of eConowind-units, what brings us closer to IMO's goals on reduction of carbon emissions.



#### Installation

The eConowind-unit can be very easily retrofitted on existing vessels, especially if container fittings are available on deck or hatchcovers, or otherwise on a dedicated foundation. The eConowind unit can be mounted with regular twistlocks, enabling 'plug & play' installation and/or removing from the hatchcovers for cargo loading and unloading.

For new vessels Conoship can integrate eConowind-units (or individual VentiFoils) in the design on dedicated positions.



Fig.2: Propulsion power reduction of one (1) unit at  $v_s = 12 \text{ kn}$ 

#### **Autonomous operation**

From a bridge-panel the eConowind-unit can be closed or initiated for operation. The eConowind-unit senses the wind speed and -direction and autonomously deploys the VentiFoils, adjusting the ventilator power and optimizing the angle of each VentiFoil relative to the apparent wind.

In heavy and/or unfavourable wind conditions the VentiFoils are closed down automatically, minimising crew efforts and ensuring safe operations.

### Main particulars

| <u>Dimensions</u>                         |                            |  |  |
|-------------------------------------------|----------------------------|--|--|
| Deployed                                  | 12.20 × 2.44 × 13.30 m     |  |  |
| Closed                                    | 12.20 × 2.44 × 02.60 m     |  |  |
| VentiFoil                                 | 1.80-1.30 × 1.10 × 10.30 m |  |  |
| Weight (complete)                         | 9,600 kg                   |  |  |
| Centre of Gravity above container fitting |                            |  |  |
| Deployed                                  | 2.60 m                     |  |  |
| Closed                                    | 1.55 m                     |  |  |
| <u>Material</u>                           |                            |  |  |
| Container                                 | Steel                      |  |  |
| VentiFoil                                 | Aluminium                  |  |  |

### **Electrical particulars**

| Power demand         |                               |  |
|----------------------|-------------------------------|--|
| Main power supp      | oly Ca. 20.0 kW               |  |
| Ventilators          | 2× 7.5 kW                     |  |
| Voltage              | 3 phase, 400-460 V @ 50-60 Hz |  |
| Control unit         | Phoenix Axio-line PLC         |  |
| Frequency controller | 2x Schneider Altivar          |  |

## **Operational conditions**

| Max. operational apparent wind speed                   |          | m/s |  |
|--------------------------------------------------------|----------|-----|--|
| Thrust (max. continuous)                               | 25       | kN  |  |
| Typical forces per container fitting (vessel specific) |          |     |  |
| Pull (up) / Push (down)                                | 80 / 140 | kN  |  |
| Shear (forward) / Shear (sideways)                     | 40 / 40  | kN  |  |